Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 781
Filter
2.
PLoS Pathog ; 20(4): e1012159, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662650

ABSTRACT

Human enteroviruses are the most common human pathogen with over 300 distinct genotypes. Previous work with poliovirus has suggested that it is possible to generate antibody responses in humans and animals that can recognize members of multiple enterovirus species. However, cross protective immunity across multiple enteroviruses is not observed epidemiologically in humans. Here we investigated whether immunization of mice or baboons with inactivated poliovirus or enterovirus virus-like-particles (VLPs) vaccines generates antibody responses that can recognize enterovirus D68 or A71. We found that mice only generated antibodies specific for the antigen they were immunized with, and repeated immunization failed to generate cross-reactive antibody responses as measured by both ELISA and neutralization assay. Immunization of baboons with IPV failed to generate neutralizing antibody responses against enterovirus D68 or A71. These results suggest that a multivalent approach to enterovirus vaccination is necessary to protect against enterovirus disease in vulnerable populations.


Subject(s)
Antibodies, Viral , Cross Reactions , Enterovirus Infections , Poliovirus Vaccine, Inactivated , Animals , Mice , Cross Reactions/immunology , Antibodies, Viral/immunology , Enterovirus Infections/immunology , Enterovirus Infections/prevention & control , Enterovirus Infections/virology , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Inactivated/administration & dosage , Vaccines, Virus-Like Particle/immunology , Antibodies, Neutralizing/immunology , Papio/immunology , Humans , Poliovirus/immunology , Female , Antibody Formation/immunology , Enterovirus/immunology , Mice, Inbred BALB C , Enterovirus D, Human/immunology
3.
J Virol ; 98(1): e0155823, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38174926

ABSTRACT

Enterovirus A71 (EV-A71) can induce severe neurological complications and even fatal encephalitis in children, and it has caused several large outbreaks in Taiwan since 1998. We previously generated VP1 codon-deoptimized (VP1-CD) reverse genetics (rg) EV-A71 viruses (rgEV-A71s) that harbor a high-fidelity (HF) 3D polymerase. These VP1-CD-HF rgEV-A71s showed lower replication kinetics in vitro and decreased virulence in an Institute of Cancer Research (ICR) mouse model of EV-A71 infection, while still retaining their antigenicity in comparison to the wild-type virus. In this study, we aimed to further investigate the humoral and cellular immune responses elicited by VP1-CD-HF rgEV-A71s to assess the potential efficacy of these EV-A71 vaccine candidates. Following intraperitoneal (i.p.) injection of VP1-CD-HF rgEV-A71s in mice, we observed a robust induction of EV-A71-specific neutralizing IgG antibodies in the antisera after 21 days. Splenocytes isolated from VP1-CD-HF rgEV-A71s-immunized mice exhibited enhanced proliferative activities and cytokine production (IL-2, IFN-γ, IL-4, IL-6, and TNF-α) upon re-stimulation with VP1-CD-HF rgEV-A71, as compared to control mice treated with adjuvant only. Importantly, administration of antisera from VP1-CD-HF rgEV-A71s-immunized mice protected against lethal EV-A71 challenge in neonatal mice. These findings highlight that our generated VP1-CD-HF rgEV-A71 viruses are capable of inducing both cellular and humoral immune responses, supporting their potential as next-generation EV-A71 vaccines for combating EV-A71 infection.IMPORTANCEEV-A71 can cause severe neurological diseases and cause death in young children. Here, we report the development of synthetic rgEV-A71s with the combination of codon deoptimization and high-fidelity (HF) substitutions that generate genetically stable reverse genetics (rg) viruses as potential attenuated vaccine candidates. Our work provides insight into the development of low-virulence candidate vaccines through a series of viral genetic editing for maintaining antigenicity and genome stability and suggests a strategy for the development of an innovative next-generation vaccine against EV-A71.


Subject(s)
Capsid Proteins , Enterovirus A, Human , Enterovirus Infections , RNA-Dependent RNA Polymerase , Animals , Mice , Antibodies, Viral/immunology , Codon , Enterovirus A, Human/genetics , Enterovirus Infections/immunology , Vaccines, Attenuated , Capsid Proteins/genetics , Immunity, Humoral , Immunity, Cellular , Antibodies, Neutralizing/immunology , Viral Vaccines , Mice, Inbred ICR , Mice, Inbred BALB C , RNA-Dependent RNA Polymerase/genetics
4.
J Virol ; 97(12): e0160023, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38047678

ABSTRACT

IMPORTANCE: Enterovirus D68 (EV-D68) is an emerging respiratory pathogen associated with acute flaccid myelitis. Currently, no approved vaccines or antiviral drugs are available. Here, we report four functionally independent neutralizing antigenic sites (I to IV) by analyses of neutralizing monoclonal antibody (MAb)-resistant mutants. Site I is located in the VP1 BC loop near the fivefold axis. Site II resides in the VP2 EF loop, and site III is situated in VP1 C-terminus; both sites are located at the south rim of the canyon. Site IV is composed of residue in VP2 ßB strand and residues in the VP3 BC loop and resides around the threefold axis. The developed MAbs targeting the antigenic sites can inhibit viral binding to cells. These findings advance the understanding of the recognition of EV-D68 by neutralizing antibodies and viral evolution and immune escape and also have important implications for the development of novel EV-D68 vaccines.


Subject(s)
Antibodies, Neutralizing , Capsid Proteins , Enterovirus D, Human , Enterovirus Infections , Humans , Capsid , Capsid Proteins/chemistry , Enterovirus D, Human/genetics , Enterovirus Infections/immunology , Enterovirus Infections/virology
5.
Nat Commun ; 14(1): 2329, 2023 04 22.
Article in English | MEDLINE | ID: mdl-37087523

ABSTRACT

Rhinoviruses and allergens, such as house dust mite are major agents responsible for asthma exacerbations. The influence of pre-existing airway inflammation on the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely unknown. We analyse mechanisms of response to viral infection in experimental in vivo rhinovirus infection in healthy controls and patients with asthma, and in in vitro experiments with house dust mite, rhinovirus and SARS-CoV-2 in human primary airway epithelium. Here, we show that rhinovirus infection in patients with asthma leads to an excessive RIG-I inflammasome activation, which diminishes its accessibility for type I/III interferon responses, leading to their early functional impairment, delayed resolution, prolonged viral clearance and unresolved inflammation in vitro and in vivo. Pre-exposure to house dust mite augments this phenomenon by inflammasome priming and auxiliary inhibition of early type I/III interferon responses. Prior infection with rhinovirus followed by SARS-CoV-2 infection augments RIG-I inflammasome activation and epithelial inflammation. Timely inhibition of the epithelial RIG-I inflammasome may lead to more efficient viral clearance and lower the burden of rhinovirus and SARS-CoV-2 infections.


Subject(s)
Antiviral Restriction Factors , Asthma , COVID-19 , DEAD Box Protein 58 , Inflammasomes , Rhinovirus , Humans , Antiviral Restriction Factors/genetics , Antiviral Restriction Factors/metabolism , Asthma/genetics , Asthma/immunology , COVID-19/genetics , COVID-19/immunology , DEAD Box Protein 58/metabolism , Enterovirus Infections/genetics , Enterovirus Infections/immunology , Inflammasomes/genetics , Inflammasomes/metabolism , Inflammation , Interferon Type I , Picornaviridae Infections/genetics , Picornaviridae Infections/immunology , Rhinovirus/metabolism , Rhinovirus/pathogenicity , SARS-CoV-2
6.
Viruses ; 14(10)2022 10 12.
Article in English | MEDLINE | ID: mdl-36298792

ABSTRACT

Human rhinoviruses (HRVs) are small non-enveloped RNA viruses that belong to the Enterovirus genus within the Picornaviridae family and are known for causing the common cold. Though symptoms are generally mild in healthy individuals, the economic burden associated with HRV infection is significant. A vaccine could prevent disease. The Vero-cell-based viral vaccine platform technology was considered for such vaccine development. Unfortunately, most HRV strains are unable to propagate on Vero cells due to a lack of the major receptor of HRV group A and B, intercellular adhesion molecule (ICAM1, also known as CD54). Therefore, stable human ICAM1 expressing Vero cell clones were generated by transfecting the ICAM1 gene in Vero cells and selecting clones that overexpressed ICAM1 on the cell surface. Cell banks were made and expression of ICAM1 was stable for at least 30 passages. The Vero_ICAM1 cells and parental Vero cells were infected with four HRV prototypes, B14, A16, B37 and A57. Replication of all four viruses was detected in Vero_ICAM1, but not in the parental Vero cells. Altogether, Vero cells expressing ICAM1 could efficiently propagate the tested HRV strains. Therefore, ICAM1-expressing cells could be a useful tool for the development and future production of polyvalent HRV vaccines or other viruses that use ICAM1 as a receptor.


Subject(s)
Intercellular Adhesion Molecule-1 , Picornaviridae Infections , Rhinovirus , Vero Cells , Viral Vaccines , Animals , Humans , Chlorocebus aethiops , Enterovirus/genetics , Enterovirus/immunology , Enterovirus Infections/genetics , Enterovirus Infections/immunology , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/immunology , Picornaviridae Infections/genetics , Picornaviridae Infections/immunology , Rhinovirus/genetics , Rhinovirus/immunology , Vero Cells/immunology , Viral Vaccines/immunology
7.
J Virol ; 96(11): e0043522, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35579435

ABSTRACT

Platelet factor 4 (PF4) or the CXC chemokine CXCL4 is the most abundant protein within the α-granules of platelets. Previous studies found that PF4 regulates infections of several viruses, including HIV-1, H1N1, hepatitis C virus (HCV), and dengue virus. Here, we show that PF4 is an inhibitor of enterovirus A71 (EV71) and coxsackievirus A16 (CA16) infections. The secreted form of PF4 from transfected cells or soluble purified PF4 from Escherichia coli, even lacking signal peptide affected secretion, obviously inhibited the propagation of EV71 and CA16. Mechanistically, we demonstrated that PF4 blocked the entry of the virus into the host cells by interactions with VP3 proteins of EV71/CA16 and the interaction with SCARB2 receptor-mediated EV71 and CA16 endocytosis. As expected, the incubation of anti-PF4 antibody with PF4 blocked PF4 inhibition on EV71 and CA16 infections further supported the above conclusion. Importantly, pretreatment of EV71 viruses with PF4 significantly protected the neonatal mice from EV71 lethal challenge and promoted the survival rate of infected mice. PF4 derived from natural platelets by EV71/CA16 activation also presented strong inhibition on EV71 and CA16. In summary, our study identified a new host factor against EV71 and CA16 infections, providing a novel strategy for EV71 and CA16 treatment. IMPORTANCE The virus's life cycle starts with binding to cell surface receptors, resulting in receptor-mediated endocytosis. Targeting the entry of the virus into target cells is an effective strategy to develop a novel drug. EV71 and CA16 are the major pathogens that cause hand, foot, and mouth disease (HFMD) outbreaks worldwide since 2008. However, the treatment of EV71 and CA16 infections is mainly symptomatic because there is no approved drug. Therefore, the underlying pathogenesis of EV71/CA16 and the interaction between host-EV71/CA16 need to be further investigated to develop an inhibitor. Here, we identified PF4 as a potent entry inhibitor of EV71 and CA16 via binding to VP3 proteins of EV71 and CA16 or binding to receptor SCARB2. In the EV71 infection model, PF4 protected mice from EV71 lethal challenge and promoted the survival rate of EV71-infected mice. Our study suggests that PF4 represents a potential candidate host factor for anti-EV71 and CA16 infections.


Subject(s)
Coxsackievirus Infections , Enterovirus Infections , Platelet Factor 4 , Virus Internalization , Animals , Coxsackievirus Infections/immunology , Enterovirus , Enterovirus A, Human , Enterovirus Infections/immunology , Immunologic Factors/metabolism , Mice , Platelet Factor 4/metabolism
8.
Cell Death Dis ; 13(4): 328, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35399111

ABSTRACT

Brainstem encephalitis, a manifestation of severe enterovirus 71 (EV71) infection, is an acute excessive inflammatory response. The mechanisms underlying its development remain poorly understood. Usually neurotropic viruses trigger acute host immune response by engaging cell surface or intracellular receptors. Here, we show that EV71 engagement with intracellular receptor TLR9 elicits IL-12p40-iNOS signaling causing encephalitis in mice. We identified IL-12p40 to be the only prominent cytokine-induced at the early infection stage in the brainstem of mice subjected to a lethal dose of EV71. The upregulated IL-12p40 proteins were expressed in glial cells but not neuronal cells. To better understand the role of IL-12p40 in severe EV71 infection, we treated the EV71-infected mice with an antibody against IL-12p40 and found the mortality rate, brainstem inflammation, and gliosis to be markedly reduced, suggesting that the acute IL-12p40 response plays a critical role in the pathogenesis of brainstem encephalitis. Mechanistically, intracellular TLR9 was found essential to the activation of the IL-12p40 response. Blocking TLR9 signaling with CpG-ODN antagonist ameliorated IL-12p40 response, brainstem inflammation, and limb paralysis in mice with EV71-induced encephalitis. We further found the glial IL-12p40 response might damage neurons by inducing excess production of neurotoxic NO by iNOS. Overall, EV71 engagement with intracellular TLR9 was found to elicit a neurotoxic glial response via IL12p40-iNOS signaling contributing to the neurological manifestation of EV71 infection. This pathway could potentially be targeted for the treatment of brainstem encephalitis.


Subject(s)
Encephalitis , Enterovirus A, Human , Enterovirus Infections , Interleukin-12 Subunit p40 , Toll-Like Receptor 9 , Animals , Encephalitis/immunology , Encephalitis/virology , Enterovirus Infections/immunology , Inflammation , Interleukin-12 Subunit p40/metabolism , Mice , Nitric Oxide Synthase Type II/metabolism , Toll-Like Receptor 9/metabolism
9.
PLoS Negl Trop Dis ; 16(2): e0010073, 2022 02.
Article in English | MEDLINE | ID: mdl-35134062

ABSTRACT

A substantial amount of epidemiological data has been reported on Enterovirus D68 (EV-D68) infections after the 2014 outbreak. Our goal was to map the case fatality rate (CFR) and prevalence of current and past EV-D68 infections. We conducted a systematic review (PROSPERO, CRD42021229255) with published articles on EV-68 infections in PubMed, Embase, Web of Science and Global Index Medicus up to January 2021. We determined prevalences using a model random effect. Of the 4,329 articles retrieved from the databases, 89 studies that met the inclusion criteria were from 39 different countries with apparently healthy individuals and patients with acute respiratory infections, acute flaccid myelitis and asthma-related diseases. The CFR estimate revealed occasional deaths (7/1353) related to EV-D68 infections in patients with severe acute respiratory infections. Analyses showed that the combined prevalence of current and past EV-D68 infections was 4% (95% CI = 3.1-5.0) and 66.3% (95% CI = 40.0-88.2), respectively. The highest prevalences were in hospital outbreaks, developed countries, children under 5, after 2014, and in patients with acute flaccid myelitis and asthma-related diseases. The present study shows sporadic deaths linked to severe respiratory EV-D68 infections. The study also highlights a low prevalence of current EV-D68 infections as opposed to the existence of EV-D68 antibodies in almost all participants of the included studies. These findings therefore highlight the need to implement and/or strengthen continuous surveillance of EV-D68 infections in hospitals and in the community for the anticipation of the response to future epidemics.


Subject(s)
Enterovirus D, Human/isolation & purification , Enterovirus Infections/epidemiology , Enterovirus Infections/mortality , Antibodies, Viral , Asthma , Central Nervous System Viral Diseases , Enterovirus D, Human/immunology , Enterovirus Infections/immunology , Humans , Myelitis , Neuromuscular Diseases , Prevalence , Respiratory Tract Infections
10.
Int J Mol Sci ; 23(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35163412

ABSTRACT

Protein kinase B2 (AKT2) is involved in various cardiomyocyte signaling processes, including those important for survival and metabolism. Coxsackievirus B3 (CVB3) is one of the most common pathogens that cause myocarditis in humans. The role of AKT2 in CVB3 infection is not yet well understood. We used a cardiac-specific AKT2 knockout (KO) mouse to determine the role of AKT2 in CVB3-mediated myocarditis. CVB3 was injected intraperitoneally into wild-type (WT) and KO mice. The mice's survival rate was recorded: survival in KO mice was significantly decreased compared with WT mice (WT vs. KO: 73.3 vs. 27.1%). Myocardial damage and inflammation were significantly increased in the hearts of KO mice compared with those of WT mice. Moreover, from surface ECG, AKT2 KO mice showed a prolonged atria and ventricle conduction time (PR interval, WT vs. KO: 47.27 ± 1.17 vs. 64.79 ± 7.17 ms). AKT2 deletion induced severe myocarditis and cardiac dysfunction due to CVB3 infection. According to real-time PCR, the mRNA level of IL-1, IL-6, and TNF-α decreased significantly in KO mice compared with WT mice on Days 5 after infection. In addition, innate immune response antiviral effectors, Type I interferon (interferon-α and ß), and p62, were dramatically suppressed in the heart of KO mice. In particular, the adult cardiac myocytes isolated from the heart showed high induction of TLR4 protein in KO mice in comparison with WT. AKT2 deletion suppressed the activation of Type I interferon and p62 transcription in CVB3 infection. In cardiac myocytes, AKT2 is a key signaling molecule for the heart from damage through the activation of innate immunity during acute myocarditis.


Subject(s)
Enterovirus B, Human/immunology , Enterovirus Infections/immunology , Immunity, Innate , Myocarditis/immunology , Myocardium/immunology , Proto-Oncogene Proteins c-akt/immunology , Acute Disease , Animals , Enterovirus B, Human/genetics , Enterovirus Infections/genetics , HeLa Cells , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/virology , Mice , Mice, Knockout , Myocarditis/genetics , Myocarditis/virology , Proto-Oncogene Proteins c-akt/genetics
11.
Front Immunol ; 12: 749618, 2021.
Article in English | MEDLINE | ID: mdl-34887856

ABSTRACT

Increasing cases related to the pathogenicity of Enterovirus D68 (EV-D68) have made it a growing worldwide public health concern, especially due to increased severe respiratory illness and acute flaccid myelitis (AFM) in children. There are currently no vaccines or medicines to prevent or treat EV-D68 infections. Herein, we performed genome-wide transcriptional profiling of EV-D68-infected human rhabdomyosarcoma (RD) cells to investigate host-pathogen interplay. RNA sequencing and subsequent experiments revealed that EV-D68 infection induced a profound transcriptional dysregulation of host genes, causing significantly elevated inflammatory responses and altered antiviral immune responses. In particular, triggering receptor expressed on myeloid cells 1 (TREM-1) is involved in highly activated TREM-1 signaling processes, acting as an important mediator in EV-D68 infection, and it is related to upregulation of interleukin 8 (IL-8), IL-6, IL-12p70, IL-1ß, and tumor necrosis factor alpha (TNF-α). Further results demonstrated that NF-κB p65 was essential for EV-D68-induced TREM-1 upregulation. Moreover, inhibition of the TREM1 signaling pathway by the specific inhibitor LP17 dampened activation of the p38 mitogen-activated protein kinase (MAPK) signaling cascade, suggesting that TREM-1 mainly transmits activation signals to phosphorylate p38 MAPK. Interestingly, treatment with LP17 to inhibit TREM-1 inhibited viral replication and infection. These findings imply the pathogenic mechanisms of EV-D68 and provide critical insight into therapeutic intervention in enterovirus diseases.


Subject(s)
Enterovirus D, Human/pathogenicity , Enterovirus Infections/immunology , Triggering Receptor Expressed on Myeloid Cells-1/immunology , Cell Line , Cytokines/biosynthesis , Enterovirus D, Human/immunology , Enterovirus Infections/genetics , Gene Expression Profiling , Humans , Inflammation Mediators/metabolism , MAP Kinase Signaling System , Models, Immunological , RNA-Seq , Signal Transduction/immunology , Transcription Factor RelA/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/antagonists & inhibitors , Triggering Receptor Expressed on Myeloid Cells-1/genetics , Virus Replication/drug effects
12.
J Exp Med ; 218(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34726731

ABSTRACT

Enterovirus (EV) infection rarely results in life-threatening infection of the central nervous system. We report two unrelated children with EV30 and EV71 rhombencephalitis. One patient carries compound heterozygous TLR3 variants (loss-of-function F322fs2* and hypomorphic D280N), and the other is homozygous for an IFIH1 variant (loss-of-function c.1641+1G>C). Their fibroblasts respond poorly to extracellular (TLR3) or intracellular (MDA5) poly(I:C) stimulation. The baseline (TLR3) and EV-responsive (MDA5) levels of IFN-ß in the patients' fibroblasts are low. EV growth is enhanced at early and late time points of infection in TLR3- and MDA5-deficient fibroblasts, respectively. Treatment with exogenous IFN-α2b before infection renders both cell lines resistant to EV30 and EV71, whereas post-infection treatment with IFN-α2b rescues viral susceptibility fully only in MDA5-deficient fibroblasts. Finally, the poly(I:C) and viral phenotypes of fibroblasts are rescued by the expression of WT TLR3 or MDA5. Human TLR3 and MDA5 are critical for cell-intrinsic immunity to EV, via the control of baseline and virus-induced type I IFN production, respectively.


Subject(s)
Encephalitis, Viral/immunology , Enterovirus Infections/immunology , Interferon-Induced Helicase, IFIH1/genetics , Toll-Like Receptor 3/genetics , Cells, Cultured , Child, Preschool , Encephalitis, Viral/genetics , Enterovirus/drug effects , Enterovirus/physiology , Enterovirus Infections/genetics , Female , Fibroblasts/drug effects , Fibroblasts/immunology , Fibroblasts/virology , Humans , Infant , Interferon alpha-2/pharmacology , Interferon-Induced Helicase, IFIH1/immunology , Interferon-beta/immunology , Interferon-beta/metabolism , Loss of Function Mutation , Male , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/immunology , Poly I-C/pharmacology , Rhombencephalon/virology , Toll-Like Receptor 3/immunology , Virus Replication/drug effects
13.
Curr Opin Virol ; 51: 199-206, 2021 12.
Article in English | MEDLINE | ID: mdl-34749266

ABSTRACT

Outbreaks of enteroviral infections are associated with morbidity and mortality in susceptible individuals worldwide. There are still no antiviral drugs or vaccines against most circulating enteroviruses. Antibody-mediated immunity is crucial for preventing and limiting enteroviral infections. In this review, we focus on enteroviruses that continue to cause endemics in recent years, such as rhinovirus, enterovirus A71, coxsackievirus, and echovirus, and introduce a structural understanding of the mechanisms of virus neutralization. The mechanisms by which virus-specific antibodies neutralize enteroviruses have been explored not only through study of viral structures, but also through understanding virus-antibody interactions at the amino acid level. Neutralizing epitopes are predominantly mapped on the canyon northern rim, canyon inner surface, canyon southern rim, and twofold and threefold plateaus of the capsid, where surface-exposed loops are located. This review also describes recent progress in deciphering the virus-receptor complex and structural rearrangements involved in the uncoating process, providing insight into plausible virus neutralization mechanisms.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Enterovirus Infections/immunology , Enterovirus Infections/virology , Enterovirus/immunology , Animals , Antigens, Viral/chemistry , Antigens, Viral/immunology , Capsid Proteins/chemistry , Capsid Proteins/immunology , Endemic Diseases , Humans
14.
Front Immunol ; 12: 700903, 2021.
Article in English | MEDLINE | ID: mdl-34566960

ABSTRACT

The activation of the sympathetic nervous system, release of norepinephrine (NE), and adrenergic receptor signaling participate in and regulate the complicated enterovirus 71 (EV71) brainstem encephalitis (BE). The neurotoxin 6-hydroxydopamine (6-OHDA) selectively ablates sympathetic nerves and markedly depletes NE in innervated organs. Changes in the plasma levels of NE, severity score, cytokine profiles, and percentages of immunophenotype expression in 7-day-old Bltw : CD1 (ICR) mice infected with EV71, with or without 6-OHDA treatment, were compared. The survival rate (76.9%) of EV71-infected and 6-OHDA (30 µg/g)-treated mice was increased significantly. The clinical scores were decreased markedly on days 8-12 in MP4-infected and 6-OHDA-treated mice compared to those without treatment. The results showed that the plasma levels of NE, epinephrine, and dopamine were decreased on days 4-8 after 6-OHDA treatment and at most on day 8. The plasma levels of interleukin (IL)-12p70, tumor necrosis factor, IL-6, and IL-10 did not change significantly after 6-OHDA treatment. Interferon-γ levels decreased evidently on days 4, 6, and 8 after 6-OHDA treatment. The absolute events of CD3+CD4+, CD3+CD8+, and CD3+NK1.1+ cells of peripheral blood mononuclear cells were increased significantly in MP4-infected and 6-OHDA-treated mice compared to those without treatment. In splenocytes, the absolute cells of CD3-NK1.1+, CD3+NK1.1+ and CD11b+Gr-1+ cells of EV71-infected mice were increased significantly after 6-OHDA treatment. These findings suggested that 6-OHDA may be used a probe to explore clinical improvements and immune responses in the complicated EV71 infection. Taken together, peripheral chemical sympathectomy contribute to further understand the immunopathogenesis of EV71 BE with autonomic nervous system dysregulation.


Subject(s)
Encephalitis, Viral/immunology , Enterovirus Infections/immunology , Sympathectomy, Chemical/methods , Animals , Brain Stem/immunology , Brain Stem/pathology , Encephalitis, Viral/pathology , Enterovirus A, Human , Enterovirus Infections/pathology , Mice , Mice, Inbred ICR , Oxidopamine
15.
Front Cell Infect Microbiol ; 11: 725392, 2021.
Article in English | MEDLINE | ID: mdl-34485180

ABSTRACT

Previous studies have shown that DEAD (Glu-Asp-Ala-Glu)-box RNA helicases play important roles in viral infection, either as cytosolic sensors of pathogenic molecules or as essential host factors against viral infection. In the current study, we found that DDX6, an RNA helicase belonging to the DEAD-box family of helicase, exhibited anti-Enterovirus 71 activity through augmenting RIG-I-mediated type-I IFN response. Moreover, DDX6 binds viral RNA to form an RNA-protein complex to positively regulate the RIG-I-mediated interferon response; however, EV71 has evolved a strategy to antagonize the antiviral effect of DDX6 by proteolytic degradation of the molecule through its non-structural protein 2A, a virus-encoded protease.


Subject(s)
DEAD-box RNA Helicases , Enterovirus Infections/immunology , Interferon Type I , Proto-Oncogene Proteins , DEAD Box Protein 58 , Enterovirus A, Human , Humans , Interferon Type I/immunology , Interferon-Induced Helicase, IFIH1 , RNA, Viral , Receptors, Immunologic
16.
Virus Res ; 304: 198549, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34425164

ABSTRACT

Enterovirus D68 (EV-D68) belongs to the Picornaviridae family and can lead to severe clinical manifestations in the respiratory system. The 3D-polymerase (3Dpoly) is an important nonstructural protein during EV-D68 replication, but few studies have addressed its interaction with the host antiviral response during EV-D68 infection. Here, we used human bronchial epithelial cells to investigate the impact of the 3Dpoly on the mitochondrial dynamics and innate immune response. The results showed that the number and morphology of the mitochondria in 16HBE cells was affected during the early stage of infection, and these effects included the cellular apoptosis. Moreover, we found that the 3Dpoly of EV-D68 can interact with PGAM5 and promote mitofusin 2 protein upregulation, and subsequently, 3Dpoly impairs IFN-ß expression by impacting the activation of the RIG-I receptor signaling pathway. Our findings suggest that during EV-D68 replication, the 3Dpoly, via its interaction with PGAM5, can affect the mitochondrial dynamics and suppress the expression of IFN-ß by impacting the RIG-I-like receptor signal pathway.


Subject(s)
Enterovirus Infections , Interferon-beta , Mitochondrial Proteins , Phosphoprotein Phosphatases , Respiratory Tract Infections , Antiviral Agents , Enterovirus D, Human/genetics , Enterovirus Infections/genetics , Enterovirus Infections/immunology , Humans , Immunity, Innate , Interferon-beta/genetics , Mitochondrial Proteins/genetics , Nucleotidyltransferases , Phosphoprotein Phosphatases/genetics , RNA-Dependent RNA Polymerase , Respiratory Tract Infections/virology , Viral Proteins
17.
Front Immunol ; 12: 648184, 2021.
Article in English | MEDLINE | ID: mdl-34305887

ABSTRACT

Enterovirus 71 (EV71) is a positive single-stranded RNA virus from the enterovirus genus of the Picornaviridae family. Most young children infected with EV71 develop mild symptoms of hand, foot and mouth disease, but some develop severe symptoms with neurological involvement. Limb paralysis from EV71 infection is presumed to arise mainly from dysfunction of motor neurons in the spinal cord. However, EV71 also targets and damages skeletal muscle, which may also contribute to the debilitating symptoms. In this study, we have delineated the impacts of EV71 infection on skeletal muscle using a mouse model. Mouse pups infected with EV71 developed limb paralysis, starting at day 3 post-infection and peaking at day 5-7 post-infection. At later times, mice recovered gradually but not completely. Notably, severe disease was associated with high levels of myositis accompanied by muscle calcification and persistent motor end plate abnormalities. Interestingly, macrophages exhibited a dynamic change in phenotype, with inflammatory macrophages (CD45+CD11b+Ly6Chi) appearing in the early stage of infection and anti-inflammatory/restorative macrophages (CD45+CD11b+Ly6Clow/-) appearing in the late stage. The presence of inflammatory macrophages was associated with severe inflammation, while the restorative macrophages were associated with recovery. Altogether, we have demonstrated that EV71 infection causes myositis, muscle calcification and structural defects in motor end plates. Subsequent muscle regeneration is associated with a dynamic change in macrophage phenotype.


Subject(s)
Enterovirus A, Human , Enterovirus Infections/immunology , Macrophages/immunology , Muscle, Skeletal/pathology , Myositis/immunology , Phenotype , Recovery of Function/immunology , Animals , Antigens, Ly/metabolism , CD11b Antigen/metabolism , Calcinosis/immunology , Disease Models, Animal , Enterovirus Infections/virology , Leukocyte Common Antigens/metabolism , Mice , Mice, Inbred C57BL , Paralysis/immunology , Regeneration/immunology
18.
Nat Commun ; 12(1): 2904, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006855

ABSTRACT

Enterovirus D68 (EV-D68) is an emerging pathogen associated with respiratory diseases and/or acute flaccid myelitis. Here, two MAbs, 2H12 and 8F12, raised against EV-D68 virus-like particle (VLP), show distinct preference in binding VLP and virion and in neutralizing different EV-D68 strains. A combination of 2H12 and 8F12 exhibits balanced and potent neutralization effects and confers broader protection in mice than single MAbs when given at onset of symptoms. Cryo-EM structures of EV-D68 virion complexed with 2H12 or 8F12 show that both antibodies bind to the canyon region of the virion, creating steric hindrance for sialic acid receptor binding. Additionally, 2H12 binding can impair virion integrity and trigger premature viral uncoating. We also capture an uncoating intermediate induced by 2H12 binding, not previously described for picornaviruses. Our study elucidates the structural basis and neutralizing mechanisms of the 2H12 and 8F12 MAbs and supports further development of the 2H12/8F12 cocktail as a broad-spectrum therapeutic agent against EV-D68 infections in humans.


Subject(s)
Antibodies, Monoclonal/immunology , Enterovirus D, Human/immunology , Enterovirus Infections/immunology , Virion/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Cell Line, Tumor , Cryoelectron Microscopy , Enterovirus D, Human/drug effects , Enterovirus D, Human/physiology , Enterovirus Infections/drug therapy , Enterovirus Infections/virology , Female , Humans , Mice, Inbred BALB C , Protein Binding/drug effects , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Time-to-Treatment , Treatment Outcome , Virion/drug effects , Virion/metabolism , Virion/ultrastructure , Virus Uncoating/drug effects
19.
Biotechnol Lett ; 43(7): 1357-1369, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33796959

ABSTRACT

BACKGROUND: Enterovirus71 (EV71), the major cause of hand, foot, and-mouth disease (HFMD), has increasingly become a public health challenge. Type I interferons (IFNs) can regulate innate and adaptive immune responses to pathogens. MicroRNAs (miRNAs) play regulatory roles in host innate immune responses to viral infections. However, the roles of miR-103 and miR-107 in EV71 infection remain unclear. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to determine the expression of miR-103, miR-107, suppressor of cytokine signaling 3 (SOCS3), VP1, IFN-α, and IFN-ß. Virus titers were measured by 50% tissue culture infectious dose (TCID50) assay. Western blot assay was conducted to detect the protein levels of VP1, IFN-α, IFN-ß, SOCS3, signal transducer and activator of transcription 3 (STAT3), and phospho-STAT3 (p-STAT3). Immunofluorescence assay was used to detect the protein level of VP1. The concentrations of IFN-α and IFN-ß were examined by Enzyme-linked immunosorbent assay (ELISA). The interaction between SOCS3 and miR-103/miR-107 was predicted by starBase and verified by dual-luciferase reporter assay and RNA pull-down assay. RESULTS: MiR-103 and miR-107 were downregulated and SOCS3 was upregulated in serum from patients with EV71 and EV71-infected cells. Overexpression of miR-103 and miR-107 repressed EV71 replication by inhibiting EV71 titers and VP1 expression. Moreover, upregulation of miR-103 and miR-107 enhanced EV71-triggered the production of type I IFNs. In addition, miR-103 and miR-107 directly targeted SOCS3, and SOCS3 upregulation reversed the effects of miR-103 and miR-107 on EV71 replication and type I IFN response. Importantly, miR-103 and miR-107 increased STAT3 phosphorylation by targeting SOCS3 after EV71 infection. CONCLUSION: MiR-103 and miR-107 suppressed EV71 replication and increased the production of type I IFNs by regulating SOCS3/STAT3 pathway, which might provide a novel strategy for developing effective antiviral therapy.


Subject(s)
Enterovirus A, Human/physiology , Enterovirus Infections/genetics , Interferon Type I/metabolism , MicroRNAs/genetics , Suppressor of Cytokine Signaling 3 Protein/genetics , Animals , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Line , Chlorocebus aethiops , Enterovirus Infections/immunology , Gene Expression Regulation , Humans , Phosphorylation , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein/metabolism , Up-Regulation , Vero Cells , Virus Replication
20.
Viruses ; 13(5)2021 04 21.
Article in English | MEDLINE | ID: mdl-33919184

ABSTRACT

Enterovirus A-71 (EV71) is a global, highly contagkkious pathogen responsible for severe cases of hand-food-mouth-disease (HFMD). The use of vaccines eliciting cross neutralizing antibodies (NTAbs) against the different circulating EV71 sub-genotypes is important for preventing HFMD outbreaks. Here, we tested the cross-neutralizing activities induced by EV71 genotype/sub-genotype A, B0-B4, C1, C2, C4, and C5 viruses using rats. Differences were noted in the cross-neutralization of the 10 sub-genotypes tested but there were generally good levels of cross-neutralization except against genotype A virus, against which neutralization antibody titres (NTAb) where the lowest with NTAbs being the highest against sub-genotype B4. Moreover, NTAb responses induced by C4, B4, C1, and C2 viruses were homogenous, with values of maximum/minimum NTAb ratios (MAX/MIN) against all B and C viruses ranging between 4.0 and 6.0, whereas MAX/MIN values against B3 and A viruses were highly variable, 48.0 and 256.0, respectively. We then dissected the cross-neutralizing ability of sera from infants and children and rats immunized with C4 EV71 vaccines. Cross-neutralizing titers against the 10 sub-genotypes were good in both vaccinated infants and children and rats with the MAX/MIN ranging from 1.8-3.4 and 5.1-7.1, respectively, which were similar to those found in naturally infected patients (2.8). Therefore, we conclude that C4 EV71 vaccines can provide global protection to infants and children against HFMD caused by different sub-genotypes.


Subject(s)
Antigens, Viral/immunology , Cross Reactions/immunology , Enterovirus A, Human/genetics , Enterovirus A, Human/immunology , Enterovirus Infections/immunology , Enterovirus Infections/virology , Genotype , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Enterovirus Infections/prevention & control , Humans , Immunogenicity, Vaccine , Neutralization Tests , Rats , Vaccines, Inactivated/immunology , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...